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An experimental study of Rayleigh-Be'nard convection in helium gas at  roughly 
5 K is performed in a cell with aspect ratio 1. Data are analysed in a ' hard turbulence ' 
region (4 x 10' < Ra < 6 x 10l2) in which the F'randtl number remains between 0.65 
and 1.5, The main observation is a simple scaling behaviour over this entire range of 
Ra. However the results are not the same as in previous theories. For example, a 
classical result gives the dimensionless heat flux, Nu, proportional to R d  while 
experiment gives an index much closer to 5. A new scaling theory is described. This 
new approach suggests scaling indices very close to the observed ones. The new 
approach is based upon the assumption that the boundary layer remains in existence 
even though its Rayleigh number is considerably greater than unity and is, in fact, 
diverging. A stability analysis of the boundary layer is performed which indicates 
that the boundary layer may be stabilized by the interaction of buoyancy driven 
effects and a fluctuating wind. 

1. Introduction 
In this paper we describe some results on a particular regime of turbulence 

observed in thermal convection. The main objective of the paper is to propose a 
phenomenological explanation of those results. Thermal convection is a subject of 
longstanding interest and has many applications in science and engineering. Solar 
and stellar structure is greatly dependent on how heat is transported from the core 
to the exterior ; heat transport in the Earth's mantle is also of paramount importance 
to geophysics. Heat transport problems are also frequently encountered in 
technological applications. Our study of thermal convection is however motivated by 
basic science. This system is in many respects of unsurpassed simplicity for the study 
of the irregular and complex motions in fluids and hence is well-suited for a 
fundamental study. It has an advantage over open flow systems because of the 
greater ease with which very well-defined boundary conditions can be realized 
experimentally. In a cavity one only needs to control the temperature of the walls 
and this can be done to a remarkable precision and with great stability over a long 
period of time. In open flows, it is hard to make a well-specified and reproducible flow 
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at the inlet. On the theoretical level the simplicity of the fundamental convective 
state is also of great help. For all those reasons much interesting work on nonlinear 
problems was done on convective systems. Malkus & Veronis (1958) showed how 
the nonlinear analysis of the BBnard instability could be performed. The various 
stability properties of the nonlinear convective state were studied in detail and 
reviewed by Busse (1978). I n  a different spirit modern approaches on dynamical 
systems were initiated by the study of thermal convection by Lorenz (1963). Many 
experiments on chaotic dynamics were performed on convective systems (for 
example Libchaber & Maurer 1982) near the onset of chaos. 

More recently, we set up a convective experiment in which we could sweep the 
whole range from conduction to turbulent behaviour. Our experiment involves 
convective flow in helium gas (see Threlfall 1975) at low temperatures, about 5 OK. 
Preliminary results and some interpretation were published in a previous paper 
(Heslot, Castaing & Libchaber 1987). This paper suggests a classification of the 
different regimes that were observed depending on the Rayleigh number 

agAL3 
Ru=-. 

KV 

Here g is the acceleration due to gravity, a is the volume thermal expansion 
coefficient, A is the temperature difference between the bottom and top of the cell 
and K and u are respectively the thermal diffusivity and kinematic viscosity. 

Most of the preceding studies describe the fluid as turbulent as soon as the 
behaviour is non-periodic. Recently (Heslot et a2. 1987 ; Eckmann 1981) it became 
obvious however that the first non-periodic behaviour (called here chaos) is very 
different from developed turbulence. The difference is that  in the chaotic state only 
the time coherence is lost while the space coherence persists. The chaotic system is 
always fully spatially coherent. In the same spirit one can expect to have to 
distinguish between different types of turbulence. Heslot et al. (1987) outlined the 
classification we employ : after chaos a transition regime where the coherence 
between the probes is lost, then two turbulent states which we call soft and hard 
turbulence. To justify this classification and characterize these states Heslot et al. 
used the classical statistical tools : power spectra, cross correlations between the two 
local probes and histograms of temperature fluctuations. 

In this paper, we focus our attention upon the larger scale properties of the 
turbulent behaviour in the previously identified hard-turbulence regime. Our 
particular goal is to  pick out some of the simple-scaling behaviour exhibited in the 
data and to describe this behaviour via a kind of scaling or similarity theory. 

1.1. Previous theories and experiments 
The high-Rayleigh-number regime of convective flow has been investigated 
extensively. Both experimental and theoretical studies abound. Over 400 references 
may be found (Behringer 1985; Busse 1978; Koschmieder 1974). Here we first 
present some of the most discussed predictions of theory and then assess the 
experimental evidence existing in the literature. A summary is given in table 1.  Two 
kinds of idealized geometries are often investigated: a hot plate with an infinitely 
extended medium on top of it and a layer with horizontal top and bottom plates and 
a very large Rayleigh number. The first situation was investigated by Prandtl(l932). 
In a steady state regime the heat flux H must be fixed throughout the layer. If the 
typical velocity and temperature scales a t  a height z above the plate are u(z) and T(z) 
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respectively, one obtains, neglecting the contribution of conduction to the heat 
flux, 

In  all the following reviews and in the exposition of the new theory we shall not try 
to estimate dimensionless constants of order unity and leave the results in the above 
form. The free fall velocity over height z is 

H - U ( Z )  T(z) .  (1.2) 

as a result 

u ( z )  N (gaT(z) z ) i ,  

gaT(z) N ( H 2 g W ) k f .  

This result can also be obtained through dimensional analysis. This is the only power 
law in which the molecular transport coefficients K and v do not appear and it is hence 
the only appropriate law in the limit of high Rayleigh number. 

Prandtl’s ‘free fall’ similarity theory does not however specify the heat flux in a 
layer of finite height. Another kind of similarity argument is needed. It is applicable 
to  layers at high Rayleigh number (Howard 1963). A high Rayleigh number can be 
obtained by fixing temperature on both plates but letting the height L grow 
indefinitely. If a regime independent of the height of the box develops near the 
bottom plate the heat flux should reach a finite limit independent of the height of the 
box. The only power law that satisfies this requirement is (Priestley 1954) 

N u  - Rai, (1.5) 

where Nu is the ratio of the total heat flux to the conductive heat flux 

N u  = HL/uA. (1 -6) 

The free fall assumption and this classical 4 law are actually relatively independent 
assumptions. Both are obtained through assumptions about the limit of infinite 
Rayleigh number. In  a finite box however the free fall theory is best viewed as a 
particular assumption about the behaviour in the interior of the flow. The Q law is 
rather an assumption about boundary layers. I n  the free fall theory the interior can 
reach a regime of Nu - Rai and is hence quite inefficient in limiting the heat flux. It 
is hence plausible that the heat flux is determined by the boundary layers. 

More detailed investigations of both the interior and boundary layer classical 
similarity theories abound. Monin & Obukhov (1953, 1954, see also Monin &, Yaglom 
197 1, chapter 7 and the references they cite) investigated thermally stratified shear 
layers with a horizontal wind. Priestley (1959) gave a detailed description of the 
atmospheric boundary layer using various similarity hypotheses. 

The experiments and theory of Malkus (1954a, b, 1963) gave an analysis of the 
turbulent regime in terms of marginal stability of the mean flow and other related 
assumptions (see also the interesting reformulation of the theory by Spiegel 1962). 
This approach allows one to derive the $ law without reference to similarity theory, 
and gives a temperature dependence in the interior that  seems in better agreement 
with experiment. 

The idea that the boundary layer is marginally stable is a crucial point in the 
theory presented by Malkus (1954b, 1963) but has been further developed in 
Howard’s work. His argument (Howard 1966) is as follows: if there is a thermal 
boundary layer of width h above which the temperature gradient is negligible and 
below which there is no fluid motion the heat flux is given by 

H - Kdlh. (1.7) 
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Index 
Amplitude Theoretical values 

0.282 f0.006 - 7 - 3 

Quantity Experiment Name Experimental value Present paper Classical 
t 1 

1 _-  -- -0.147 f 0.005 
NU 0.23 f0.03 B 

A , / A  0.36f0.04 Y 7 
W , L z / K  0.36fO.Opl - 1 - 2 

u, L / v  1.05 Pr-5 & 0.43 B - 8 

(T( z )  ) / A  varies - 1 

6 0.491 fO.002 

s varies 0 

2 3 

3 

TABLE 1 ,  Summary of index values. The origin of the data and the theoretical predictions are given 
in the text. The fits are all in the form quantity = Amplitude x Raindex except for the temperature 
which scales as a power of the distance from the bottom plate (see also f 1.2). 

The width h must be small enough so that the layer is stable but will tend to grow 
by diffusion. The stability of the layer is determined by its Rayleigh number 

The value for instability can be extrapolated (Chandrasekhar 1961) from known 
results for simple layers (Pellew & Southwell 194-0; Reid & Harris 1958) and a 
reasonable value is Ra, x lo3. One obtains 

Nu x (Ra/Ra,)i. (1.9) 

The coefficient and index of that law have been considered in good agreement (within 
10 %) with experiments at  moderate Rayleigh numbers. 

Other theories in the spirit of Malkus’ and Howard’s theory have been developed 
by several authors. Herring (1963, 1964)’ Roberts (1966), Gough, Spiegel & Toomre 
(1975) and Toomre, Gough t Spiegel (1977, 1982) developed so called ‘mean field 
theories ’ where several modes are considered on top of the marginally stable mean 
temperature field conjectured by Malkus. The optimum theories of Howard (1963), 
Busse (1969, 1978b) and Chan (1971) attempt to find an upper bound on turbulent 
heat transport. This upper bound is expected to be realized if the heat flux is optimal 
with respect to the constraints stated in the theory. 

Kraichnan (1962) refined the similarity theory to include a double boundary layer. 
One of the interesting results of his analysis is that a modification of the classical 
scaling (1.9) is to be expected around Ra = lo1* because of the interaction of the 
boundary layer with a horizontal fluctuating wind. Our work, which builds upon 
Kraichnan’s is also a similarity theory. The advantage of working with such 
similarity theories is that many predictions are made easily from dimensional 
analysis. On the other hand the choice of the lengthscales that are introduced, and 
those which are not considered, may seem somewhat arbitrary. Experiments provide 
a check on whether the similarity theory grasps the relevant phenomena. 

1.2. Outline of the paper 
The next section of the paper describes the experiment and compares them with the 
predictions of the classical boundary-layer theory, which is found to be inconsistent 
with the data. Another similarity theory is developed in 53 and the various scaling 
indices thus obtained are compared with experiment. A more detailed theoretical 
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description of how the classical description of the boundary layer breaks down in the 
presence of turbulence in the interior is presented in $4, For the sake of the reader 
who would desire a quick look at  the results without entering the detailed exposition 
we show the major scaling results of the new theory in table 1. In this table we give 
the observed experimental power laws and also give our theoretical predictions for 
the indices. For comparison some classical values of the indices are also provided. We 
use free fall theory for the velocity estimate. The quantities in the table are 

(i) The dimensionless heat flux Nu. 
(ii) A typical observed value of the temperature fluctuation near the centre of the 

cell A, .  Its precise definition is given in 92. 
(iii) A resonant frequency up observed near the bottom of the cell. The frequency 

of boundary layer detachments predicted by Howard (1966) is chosen as a classical 
value although the mechanism of this pulsation might be entirely different. 

(iv) An interesting result not drawn from our experiment is the measurement of 
the typical velocity in the interior by Tanaka & Miyata (1980). The free fall theory 
(s = 5) was used to predict the index for the speed in the 'theoretical' value 
column. 

(v) The observed temperature decay away from the boundary layer measured in 
terms of the boundary-layer width, that is ( T ( z ) ) / A  x (z /A)- ' .  In our theory there 
is no steep variation of the typical temperature as the fluid rises in the interior. This 
is expressed in equation (3.12). 
In the work described below, Bernard Castaing, Frangois Heslot, Albert Libchaber 
and Xiao-Zhong Wu were primarily responsible for the experiment. Primary 
responsibility for data transfer and analysis fell to Gemunu Gunaratne, Stefan 
Thomae and Gianluigi Zanetti, primary responsibility for the scaling theory lies with 
Leo Kadanoff, Stbphane Zaleski and Gianluigi Zanetti and the stability theory 
belongs to Stephane Zaleski. 

2. The experiment 
2.1. Experimental set-up and procedure 

As was noted by Threlfall, gaseous 4He at  low temperature (5 OK) is an interesting 
fluid. The Rayleigh number can be easily controlled since in the dilute gas regime, 
both v and K are inversely proportional to the density. Moreover the pressure of the 
critical point of 'He is reasonably low : 2.2 atm. One can thus vary the coefficient in 
front of A in equation (1.1) over a very wide range. On the other hand the Prandtl 
number, Pr = V / K ,  remains between 0.65 and 1.1  up to Ra = loll and then increases 
up to 1.5 for Ra = 10l2. The Prandtl number increases further in the neighbourhood 
of the critical point. To eliminate the effect of this rise, we do not include data for 
Ra > 10l2 in our analysis. 

Other advantages of the low temperature environment are the sensitivity and 
short response time of the probes. The sensitivity is due to the low thermal noise and 
the rapid variation of the resistance of the probes with the temperature 

dr dT 
- x 2--. 
T T 

The usual counterpart, that is the l/f noise, is very small in our Si bolometers and 
not visible in our range of frequencies. The short response time is due to the low 
specific heat of Si at  this temperature. On the other hand, the electron-phonon 
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FIQURE 1. The experimental set-up. 

decoupling could be a problem only at lower temperature. We have measured the 
response time to a self heating to be less than 1 ms, well beyond our needs. 

Let us now describe the cell (see figure 1). It has the shape of a vertical cylinder 
whose diameter is equal to  its height : L = 8.7 em. The aspect ratio is thus 1. The thin 
stainless steel wall of the cell is thermally isolated from the main liquid helium bath 
by a vacuum jacket. The gas filling tube has a 2 m long thermalization on the upper 
plate before entering the cell and can be closed near the cell in the helium bath. The 
upper plate is thermally regulated by a linear research LR- 130 regulation system. 
The bottom plate is heated with constant d.c. power using a four-wire method for the 
precise measurement of power. Both plates are made of thick pure copper with 
calibrated Ge thermometers in each. Two local arsenic-doped silicon far-infrared 
detectors, 200 pm in size are used to measure local temperature fluctuations. The 
‘bottom’ one is placed above the bottom plate and inside the cell, half a radius in 
distance from the cell axis and 200 pm from the bottom plate. The centre bolometer 
is placed right above the bottom one a t  equal distances from both plates. An Allen 
Bradley resistance, thinned down in size is placed 5 mm above the bottom plate as 
shown in figure 1. 

The sensors as well as the Ge thermometers of the plates are measured using a four- 
wire bridge of the type described by Anderson (1973). Measured in the usual way, 
avoiding self heating by the testing current, they provide the local temperature 
fluctuations of the fluid. On the other hand, with a strong measuring current their 
temperature is no longer characteristic of the local temperature, but of the local 
velocity, on which the cooling rate is dependent. This is the well-known hot-wire 
technique, widely used in aerodynamics. 

The signal of each bridge is measured by a PAR lock-in amplifier. The outputs of 
these lock-in amplifiers can be sent to  a multiprogrammer HP6942A for digital 
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FIQURE 2. The Nu-Ra correlation. The vertical line at Ra = 4 x lo7 indicates the transition from 

soft to hard turbulence. 

acquisition, or to a HP3562A Digital Signal Analyzer for statistical treatment (power 
spectra, correlation, histograms). 

The properties of helium used in our analysis are taken from the work of McCarthy 
(1973). Figure 2 shows our experimental results for Nusselt number versus Rayleigh 
number up to Ra = 10l2. To span all this range we have used six different helium 
densities, whose corresponding pressures are 3,8.5,34,138,625 Torr and 2 atm. This 
allowed large overlap in the study. The calibration between upper and lower 
thermometers was checked for each pressure, with errors always smaller than 
0.4mK. We could thus be confident in results from temperature differences of 
AT x 3 mK to AT % 1 K, which represents more than two decades in Ra for each 
pressure. 

As noted in Heslot et al. (1987) there are a variety of distinct differences 
between two turbulent regions : a region of 'soft ' turbulence which lies in the range 
2 x lo5 < Ra < 4 x lo7 and a hard turbulence region which has been observed for 
4 x lo7 < Ra < 6 x 10l2. One diagnostic for the difference is a histogram which plots 
the number of observations of a temperature T against T .  For the centre probe, the 
histograms for the different regions show quite different signatures, with the soft 
region having a more Gaussian character, see figure 3(a )  and the hard turbulence 
showing a more exponential character, see figure 3 ( b ) .  The change in histograms 
(and other diagnostics) occurs rather abruptly around Ra - 4 x lo7. Hence this value 
will be the lower cut-off for most of our analysis. We use Ra = 10l2 as our upper cut- 
off since at  higher Ra values the Prandtl number in our situation no longer remains 
substantially constant. 

2.2. Nusselt number dependence upon Rayleigh number 
In the selected range our measured Nusselt number can be very well fit in the 
form 

Nu = I(, Rd, (2.1) 

with No = 0.23 & 0.03, (2.2) 

p = 0.282 & 0.006. (2.3) 
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FIGURE 3. Histograms of the temperature distribution in the centre probe. (a) Soft turbulence 
regime, Ra = 8.41 x lo6. (6) Hard turbulence regime, Ra = 1.47 x lo8. 
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Note that the result differs from the classical p = in an apparently significant 
fashion (see table 1). To see this result in a broader context, we reviewed a number 
of experimental papers on convection in helium, air, and water. The aspect ratio 
(height over diameter) was variable and the Rayleigh numbers considered varied 
between lo5 and lo9. Most experiments yield an exponent ,8 slightly below 4 and are 
between 0.29 and 0.31 (Chu & Goldstein 1973; Garron & Goldstein 1973; Threlfall 
1975; Pitzjarrald 1976). In  some of these experiments the slope of the 1nNu us In Ra 
curve seems to inch upwards as Ra is increased. A relatively recent experiment 
showing that kind of behaviour was performed by Goldstein & Tokuda (1980). A 
similarity theory was offered by Long (1976) to predict the rate a t  which the law (1.9) 
would be approached. His theory is based on the matching of a small boundary layer 
with an interior of finite size. In  this case a correction due to the scaling in the interior 
contributes to the thermal resistance of the box. This scaling of the interior flow 
depends on the temperature profile assumed to have the form 

where A is a typical temperature scale in the interior, z1 a typical height for a 
boundary layer and s an unknown index. Prandtl’s theory is consistent with s = 5. 
Malkus (1954, 1963) obtained s = 1 whereas Long (1975) expected s = t from the 
analysis of some meteorological data. Using relation (2.4) Long obtains 

(Ra/Nu3)i = C, - C,(RaNu)-*/*, (2.5) 

where C, and C, are positive dimensionless constants. In figure 4(a)  we show a fit to 
our data using the value s = t ,  suggested by Long, while in figure 4(b)  we use s = 3,  
the free fall value. A straight line fit would indicate satisfaction of (2.5). The data 
indicate a substantial deviation from a straight line and suggest that the power law 
form (2.1) with the non-classical exponent p is preferred. 

We can also compare our Nusselt versus Rayleigh number results with previous 
experimental measurements, and with other theories. In doing this one must keep in 
mind the possibility that the Nu vs. Ra curve can depend upon the Prandtl number 
and also the shape of the container. In  our case, Pr varies in the range 0.7 to 1.0 up 
to  Rayleigh numbers of 2 x loll and then increases up to 1.5 at Ra = lo1,. The 
container is in the shape of a cylinder with aspect ratio (height/diameter) equal to 
one. Of all the previous experiments we have examined, Threlfall (1975) is the closest 
to ours in that he too used helium and a cylindrical geometry. He finds results in 
which for values of length/diameter equal to 0.4, 2.5 (in a preliminary experiment), 
3 and 7 the Nusselt numbers are respectively 57.30, 108.7, 67.43 and 96.58 a t  
Rayleigh number of lo9. We find Nu = 80 at this Rayleigh number. It appears that 
Nu is non-monotonic with aspect ratio. (See also Deardorff & Willis (1965) who see 
a similar non-monotonic behaviour.) Given the likelihood of a non-monotone 
structure, we consider the agreement between our Nu and Threlfall’s to be quite 
reasonable. One can directly compare our experimental results with the theory of 
Malkus (1954b, 1963). Since the boundary-layer thickness in that theory is 
determined by the local behaviour in its neighbourhood, the Rayleigh number for the 
boundary layer written in the form 
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FIGURE 4. The dependence of the,heat flux on the temperature difference is plotted using the 
variables (RaNu)-*I4 and (Ra/Nu3)s. In (a)  s = t ,  in (6) 8 = 5. A straight-line fit would indicate 
agreement with Long's result (see text). 
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FIGURE 5. Time recording of the temperatures at the centre (a) and bottom (b) probes in the 
hard turbulence regime, Ra = 1.2 x 10’. 

has a particularly simple behaviour. In fact, for any box with a constant cross- 
section, Ra,, should be only a function of Prandtl number, and be quite independent 
of box shape and other details. In symbols 

Rub’ = P(Pr).  (2.7) 

On the other hand, our theory (developed below) suggests that the boundary-layer 
thickness is determined by a fluctuating wind near the boundary layer so that 

(2.8) Rabl = G(Pr, . . .) Raf, 

where G depends upon such ‘details’ as the box shape and aspect ratio. The work of 
Goldstein & Chu (1969) does not support equation (2.7), but because the aspect ratio 
is changing i t  cannot test (2.8). The work of Townsend (1959) is in fact consistent 
with (2.7) (see Malkus 1963) but the range of estimated Ra(3 x lo8 < Ra < 7 x los) is 
too small to be definitive. (Moreover, Townsend’s ‘box’ does not have a top. This 
open geometry will probably have a very different flow pattern from that in a closed 
box.) On the other hand, our data gives Rub’ equal to 76, 127, 256, and 361 for 
Rayleigh numbers respectively 4 x lo’, lo9, loll and These data, if taken at  
their face value, rule out (2.7) and suggest the incompleteness of the theory upon 
which it is based. At least they do push one towards looking for another theoretical 
approach. 

2.3. Experimental evidence for scaling behaviour 
Figures 5 and 6 show time recordings for the centre and bottom bolometers at  two 
different Rayleigh numbers 1.2 x lo9 and 2 x 10“. The centre bolometer signal is 
characterized by a distribution of sharp peaks of variable heights. A simple 
observation of the two recordings shows that the fluctuation amplitude decreases as 
Ra increases (the vertical scale is expressed relative to the total temperature 
difference A ) .  In a later paper we intend to focus on the detailed correlation of the 
time signals. Here we focus upon a few properties needed to characterize the overall 
properties of the turbulent flow in different regions of the cell. In particular we look 
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for histograms which depict the number of times a given temperature T is observed 
for each of the bolometers. Figure 7 shows two such histograms for different Rayleigh 
numbers each taken from the bottom bolometer. This bolometer is in a fixed position 
200 pm above the bottom plate. We interpret the marked change in terms of the 
boundary layer which we believe to exist near the cell walls. If this boundary layer 
is conductive or viscous in character its thickness h should be given by the estimate 
(Kraichnan 1962) 

(We use two different notations for the size of the thermal boundary layer in this 
paper : h is used almost always, but the notation z1 is used to connote our use of the 
classical similarity theory instead of our new model.) From this estimate, for the 
lower of the two Rayleigh numbers the probe will be just within the boundary layer 
while for the higher Rayleigh number it will fall outside the boundary layer. In  these 
histograms one can clearly see large low-temperature excursions inside the boundary 
layer (figure 7 a ) ,  and large high-temperature excursions when the probe is outside 
the bottom boundary layer (figure 7 b ) .  

We have measured the average temperature in this bottom probe as a function of 
Nusselt number. These data are shown in figure 8. One might wish to use (2.9) to 
interpret these data in terms of a measurement of temperature as a function of scaled 
height 

where z = 200 pm is the height of the probe and L = 8.7 cm is the height of the cell. 
Note however that the results in figure 8 are averages over a probe which has a 
characteristic diameter of order 100 pm. At the smallest Rayleigh number, this size 
is negligible in comparison to the boundary-layer width. Hence for the larger 
Rayleigh numbers in figure 8, one must consider that this figure gives a spatial 
average and not a local measurement. For this reason, we are not in a good position 

h - L/Nu. (2.9) 

z/h = Nuz/L, (2.10) 
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FIQURE 7. Histograms of the temperature distribution measured at the bottom bolometer. On (a),  
the bolometer is in the thermal boundary layer, Ra = 1.2 x loD, and there are rare, colder 
excursions. On ( b ) ,  the bolometer is out of the boundary layer, Ra = 2 x loll, and there are 
relatively rare, hot excursions. 

to compare our results for average temperature with previous theoretical (e.g. 
Malkus 1963) or experimental (e.g. Townsend 1959) results. Notice that Malkus’ 
theory does fit the detailed shape of Townsend’s average temperature profile near the 
wall. Our scaling theory, described below, cannot match this achievement, but it 
does provide a better fit to other portions of our data (e.g. the Reyleigh-Nusselt 
curves). 

The signals in the bottom probe have a larger frequency range than those in the 
centre probe. These also show a somewhat intermittent signal a t  a frequency which 
we call up. This oscillation is clearly seen in the recording shown in figure 9 at 
Ra = 2.3 x 10’ taken in a time period where it is present with a large amplitude. It 
represents the envelope with about 8 periods present. The Fourier spectrum is shown 
in figure 10. This oscillation frequency wp scales with Rayleigh number like 

(2.11) 

Nl = 0.36+0.01, (2.12) 

6 = 0.491 k0.002. (2.13) 

These data have been placed in table 1.  Figure 11 shows a plot of the data used to 
generate the fit (2.11). 
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FIGURE 8. The average temperature in the bottom probe us. the Nusselt number. This provides an 
indirect measurement of the drop in average temperature as one departs from the bottom. Here 
T, is the temperature in the bottom plate. The top scale provides an estimate of z (probe position) 
divided by h (boundary-layer thickness). 
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FIGURE 9. A time series from the bottom probe, showing 8 oscillations at the characteristic 
frequency w,,. Here Ra = 2.3 x lo8. 

The scaling of (2.11) might be compared to the characteristic frequency predicted 
by Howard (1966). In the boundary layer his point of view gives a frequency 
proportional to K I A 2  so that, applying his approach, we could conclude that the right- 
hand side of (2.11) should behave as a Rayleigh number to a two-third power. The 
experiment appears to rule out this possibility. 
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FIGURE 10. Power spectrum from the bottom probe a t  Ra = 2.3 x lo8, showing the peak at the 
characteristic frequency up. The ordinate on plot (a) is given in a logarithmic scale, in plot (6) it  
is in a linear scale. 
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FIGURE 1 1 .  The dependence of the characteristic frequency w? upon Ra. The different symbols 
indicate different helium pressures within the cell. 
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FIQURE 12. Comparison of histograms of the temperature fluctuation in the centre. The number of 
times a given temperature is observed is plotted against this temperature. For various Rayleigh 
numbers the histograms are all rescaled so that the r.m.s. temperature fluctuations coincide. 

The most striking evidence for universality in the hard turbulence regime is shown 
by the histograms of the temperature of the central probe. I n  figure 12 we show 
histograms which give the probability p(T) dT that one will observe a temperature 
between T and T +  dT in the central probe. Data for four values of Ra are given. The 
pictures are superposed by setting independently in each a zero of temperature, T,, 
and a temperature scale, A,, so that 

(2.14) 

where p* is a universal function which is independent of Ra but might depend on Pr. 
and A ,  are temperature scales that depend on Ra and Pr. The wings of the 

universal function p* are well approximated, in the semi-logarithmic plot of figure 
12, by straight lines albeit with different slopes on the hot side and on the cold side. 
This universality is a very striking result. Equally striking is the simple power-law 
behaviour of the typical temperature in the central region. In  figure 13 we plot the 
standard deviation of the temperature fluctuation, T-To, as a function of the 
Nusselt number. The latter is proportional to the A ,  of (2.14). We next fit this curve 
as 

A , / A  = N3 NU", (2.15) 

t~ = -0.52&0.01, (2.16) 

N3 = 0.17f0.02. (2.17) 
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FIQURE 13. The dependence of the characteristic temprature A ,  on Nu. A ,  is proportional to a r.m.s. 
temperature fluctuation and is measured a t  the centre probe. The different symbols indicate 
different pressures in the helium. 

Classical theory gives u = - 8  while the experimental result points to u = -+. The 
result of substituting (2.1) into (2.15) is shown in table 1 and gives 

A J A  = N4 Ray, (2.18) 

= -0.147 f0.005, (2.19) 

N4 = 0.36 f 0.04. (2.20) 

3. Scaling theory 
3.1. A review of theoretical analyses 

We believe that the experimental situation can be well described by the Boussinesq 
approximation, in which the flow equations read 

u,+u.Vu = vV2u-Wp+gaTZ, 

(3.1) I -k u s  VT = K V ~ T ,  

w-u = 0, 

together with boundary conditions which set the velocity equal to zero on the walls. 
We envisage a set of thermal boundary conditions which set the temperature equal 
to i-iA at the bottom/top plates and the normal derivative of temperature equal to 
zero at  the sidewalls. 

In  what follows, we shall write the coordinate and velocity vectors as (5, y ,  z )  and 
(u, v ,  w) with z and w being upward components. 

There is one possible problem about the use of these Boussinesq equations. They 
are quite symmetrical under the exchange of top and bottom, and a flip in the sign 
of w and T. The histogram of figure 12 is not exactly symmetrical under T c-) - T. We 
think that this lack of symmetry is a consequence of the natural symmetry breaking 
which will put a single convective roll in a cell of aspect ratio unity, together with 
a pinning of that roll by the leads holding the bolometers. 
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The next step is to state a similarity analysis which defines the order of magnitude 
of the different quantities which appear in (3.1) in different regions of the cell. We 
start from the presupposition that the hard turbulence regime can be well described 
by simple power laws, as in table I ,  equations (2.1), (2.11) and (2.15), and by a 
universal behaviour as shown in figure 12. The non-classical value of p found in our 
experiment (and previous ones) suggests an important departure from the classical 
point of view concerning the boundary layer in this system. The classical result, 

boundary layer. Our result, ,8 < i, gives a boundary layer which is, in the limit of high 
Rayleigh number, too thick to exist in isolation. 

We take this result seriously and propose that the boundary layer is not sclf- 
stabilized but rather gains stability from randomly directed winds which blow across 
it. The stability of the boundary layer is investigated in a detailed calculation in 

This produces a very important difference from the classical theory. In the latter 
the stability of the boundary layer determines the heat flux a t  the leading order. In  
our view stability is irrelevant because the boundary layer can always be stabilized 
by the wind. This leaves open the problem of theoretically determining the heat flux : 
another kind of balance has to  be found to  determine p. 

In  the central or interior region of the cell, we envisage motions on many scales up 
to that of the entire cell, consisting of convective eddies, and of thermals and plumes 
(Turner 1969). These motions have been visualized by many previous experiments 
(e.g. Krishnamurti & Howard 1981 ; Chu & Goldstein 1973). I n  our view, the interior 
motion has two major effects ; it  carries heat towards the top of the cell and produces 
winds with an appropriate velocity to  stabilize the boundary layer. 

The theoretical analysis must then connect the interior behaviour with that of the 
boundary layer. This connection is two-fold. First, we require that the convection of 
temperature fluctuations of order A ,  in the central region produces a heat flux 
equal to the heat flux across the boundary layer. An additional matching condition 
requires that the hot (or cold) pieces which break off the bottom (or top) boundary 
layer are accelerated to an appropriate speed so that they can smoothly merge into 
the all-over flow in the central region. To achieve this merging we make the rather 
bold (and heuristic) assumption that there exists a mixing zone in which fluid is 
accelerated to the velocities of the central region. This zone (see figure 14) is assumed 
to be much thicker than the boundary layer, but thin compared to the height of 
the cell. In  our mathematical analysis of the mixing zone, we assume that the 
characteristic lengthscales, timescales, velocities, and temperature distributions in 
the mixing zone are those appropriate to  achieve an interpolation between the 
interior and the boundary layer. We then balance buoyancy force against viscous 
drag and obtain one more relation between the quantities describing the central 
region and those of the boundary layer. This analysis is carried out in 83.2 below. In 
this way, we derive the values of the quantities, p, y and e shown in the ‘present 
paper’ theory column in table 1. 

Section 3.3 then gives a more detailed description of the presumed behaviour of the 
mixing zone. I n  53.4, the dynamics of the mixing zone is used to explain the 
exponential character of the histogram in figure 12. Finally, the stratifications in the 
mixing zone are used to describe the nature of the observed oscillations and their 
characteristic frequency, wp. 

p = 1  3, emerges if one considers in a direct fashion the stabilization of an isolated 

5 4. 
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BGundary layer 

FIGURE 14. Two possible cartoons of the flow pattern in the centre of the cell. 

3.2. Different regions, diflerent behaviours 
In our analysis we distinguish three regions of different widths (see figure 14): a 
central region that occupies most of the box, a mixing zone of small width d ,  and an 
even smaller boundary layer of thickness A -g d,. In the latter, heat is transported 
by conduction alone. The central region is also where the experimental data are most 
universal. We hence begin the presentation of the theory in this region where 
its conclusions can most easily be verified experimentally. We then deal with the 
boundary layer and match it to the central region. The matching is made through a 
mixing zone which we will describe in more detail in the next section. 

We now offer a heuristic depiction of the geometry of the flow. Figure 14 shows two 
possible cartoon views of the geometry of the different regions. They are different but 
either cartoon is consistent with the scaling analysis given below. That analysis is 
based upon balancing the order of magnitude of various terms in the hydrodynamic 
equations and would be consistent with a variety of geometric interpretations. We 
simply do not know the correct geometry of the flow. 

The theory in the central region is the classical similarity theory. We assume there 
is a flow of typical velocity scale u,, lengthscale L and temperature scale A, .  Thermal 
and momentum diffusivities are small as compared to turbulent mixing and drag, 
and hence neglected. The only dimensionally correct relation is then 

U ,  - (agLA,)i. (3.2) 

Another assumption is needed, namely that the whole central region is filled with 
regions of typical velocity u, and temperature A, .  This implies 

H - U, A,.  (3.3) 



20 B. Castaing et al. 

\ I  

///////////////, 

FIQURE 15. The mixing of the hot fluid from the boundary layer with the flow in the interior. (a) 
A boundary layer of size A ,  stabilized by the wind, is formed (the dark line represents the bottom 
plate). ( b )  When the wind changes, the layer is unstable and breaks in a way similar to the 
Rayleigh-Taylor instability. (c) The process repeats itself. The spikes can be deformed by the wind, 
but the fraction of hot bubbles or objects is essentially determined by their speed of rise (see text). 
(d )  The entire region, cold and hot fluid together is aspired into the interior hy turbulence in the 
interior. The hot region may be deformed further in the process but the fraction of hot and cold 
fluid remains the same. 

We continue to leave out factors of order unity. Recall that in $2 we defined 
a number of scaling indexes through the relations Nu - Rap, A ,  - RayA and 
u, - RaEv/L. From (3.2) and (3.3) we get the relations between exponents: 

E = t(l + y ) ,  y = g(p-g). (3.4) 
These relations are well verified in the experiment as shown in table 1. To introduce 
a different scaling, one would need to assume that the thermals fill only a vanishing 
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fraction of the space, a t  large Ra. This is ruled out by the temperature distributions 
obtained in the experiment : a large region near zero temperature would appear as a 
spike in the distribution shown in figure 12. 

We assume that most of the temperature drop occurs over the width of the 
boundary layer. This is a reasonable assumption : buoyancy driven motions tend to 
improve transport over purely conductive transport. Hence they require smaller 
gradients for the same amount of heat flux. We call A the width of the conductive 
layer. The heat flux is then given by (1.7) and hence 

KA 
H 

A - - N Ra-pL. (3.5) 

At this stage, we have but one unknown, p. To find /3 we assert the existence of a 
mixing zone which interpolates between the extreme temperature differences in the 
boundary layer and the much milder fluctuations in the central region. We agsume 
that this zone contains two kinds of fluids. In  particular the bottom mixing zone 
contains a large fraction of tepid fluid which has a temperature distribution similar 
to  that of the central region and a much smaller fraction f of small regions of very 
hot fluid which have entered from the bottom boundary layer (see figure 15). We 
assume further that the hot fluid retains many of the characteristics of the bottom 
boundary layer as shown in figure 15. In  our cartoon view, the fluid is arranged in 
sheets which retain a thickness similar to the boundary-layer thickness A. They move 
upward under the influence of buoyancy forces until their speed i s  high enough so 
that viscous forces can balance buoyancy. At that point they have a velocity 

wh = gaAA2/v. (3.6) 

One further assumption is needed. We assert that  the velocity wh is just the right 
speed so that the hot sheets can merge into the central region flow, with its 
characteristic velocity u,. Then we write (3.6) as 

u, - gaAh2/v. (3.7) 

p = 2  7 ,  and from (3.4) one gets y = -3,  and 6 = 5. Those are the theoretical values used 

Now we have enough equations to estimate everything. Solve equations (3.71, (3.5) 
and (3.4), assuming that the Prandtl number is of order unity. One then finds 

in table 1. 

3.3. More detailed description of mixing zone 
We take the upward component of the velocity of the hot fluid to be the same as in 
the previous estimate (3.6). However these sheets or objects are in a highly unstable 
configuration. After a time, turbulent mixing will rip the sheets to pieces as in the 
figure 15. We wish to estimate the fraction f of the volume eventually occupied by 
hot fluid. To do this, notice, that  if the fluid enters from the boundary layer at an 
upward speed wb and is accelerated upwards to  the speed wh, then by conservation 
of the flux the fraction of the fluid which is hot a t  the height of high speed, is given 
by 

W h f  wb. (3.8) 

We can estimate wb by saying that, at the top of the boundary layer conductive and 
convective heat flow are of the same order so that the heat flux is 

(3.9) H - Kd/h - wbA. 
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In  this way we estimate the hot fraction as 

KV f-w. (3.10) 

In  the next stage the hot layers become unstable and shatter (see figure 15). As 
this occurs they mix with the surrounding fluid and spread into finely divided hot 
droplets or sheets. We assume that this finely divided material is aspired by the 
fast moving central flow and advected into the central region. The finely structured 
fluid in the mixing zone may be considered equivalent to a homogeneous fluid 
of temperature 

A, = f A .  (3.11) 

To close the description of hard turbulence requires the matching of the 
temperature of the mixing region with the temperature of the central region. At this 
point the present theory is in contradiction with free fall theory. Free fall theory 
pictures the formation of plumes or thermals out of the mixed fluid a t  temperature 
A,. These plumes then accelerate upward while they lose some temperature. In  the 
present theory we assume instead that the thermals are engulfed in a large-scale 
flow of velocity u, in the interior. While the mixture is advected by this flow its 
temperature does not change significantly any more and instead of the temperature 
drop described by (1.4) we get 

A, = Am, (3.12) 

so that we can now evaluate A ,  as 
KV 

A, - 
h3ga ’ 

(3.13) 

Equations (3.2), (3.3), (3.5) together with (3.13) yield once more the values of p, y 
and E used in table 1. Notice that the derivation given here is slightly different from 
the one given in the previous section, but yields identical results. We consider this 
second derivation physically more sound. Indeed it is more satisfactory to assume an 
equality of temperatures (3.12) than an  equality of speeds ((3.2), (3.6)) because it is 
possible to expect that  such an equality of temperatures will be produced by a very 
efficient turbulent mixing. 

To find the width of the mixing zone, d,, we notice that once a sheet detaches itself 
from the boundary layer i t  accelerates to the velocity w,, as above while the boundary 
layer refills with cold fluid. Then i t  accumulates heat during a time 

7, - h 2 / K ,  (3.14) 

after which it is ready to emit a new sheet. The actual time after which the new sheet 
is emitted may fluctuate widely around this average value. After this time the first 
sheet has travelled a distance d, given by 

d m  - wh 7 6 ,  (3.15) 

which yields 
gaAh4 am---. 

KV 
(3.16) 

Two successive sheets are separated by cold fluid coming from the central region (see 
figure 15). The fraction of hot fluid in the whole structure drifting upward is 

f - hldrn, (3.17) 
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in agreement with (3.10). Note that in this argument the height d, is actually the 
initial separation between sheets. The actual height over which the fluid will be well 
mixed is not relevant a t  this point of the discussion, Even if it were of order L the 
argument would stand unchanged. We can offer only conjectures here. For example, 
mixing layers that might encircle the entire box give a situation like the one of figure 
14 where zones of coherent temperature + A ,  and -Am wrap around the box. By 
substituting (3.12) with (3.11), and (3.17) we find the result 

A 
dm - h--, 

A ,  
(3.18) 

so that, as expected, d, % A. I n  fact, from the estimate h - L/Nu, and the data in 
table 1, (3.18) implies that d, is of order L at the sofkhard transition. 

3.4. The mixing zone : exponential distributions and oscillations 
The fact that temperature distributions are exponential is a striking characteristic of 
the hard turbulence regime. Yet models that predict log-normal distributions or 
distributions with algebraic tails are more common in turbulence theory than models 
producing exponential laws. Classical theories, for instance, in which the thermals 
expand and cool by mixing with new fluid as they rise often model the cooling as 
a multiplicative process. This would yield algebraic tails to the probability dis- 
tributions, which are not observed. To explain the exponential distribution we 
assume that the warm mixing zone forming near the bottom of the box is aspired 
intermittently by the central flow. Between these aspiration events the mixing zone 
is heated a t  a constant rate H and its temperature grows as 

Trn(t) - H m  x ( t - tJldm, (3.19) 

where t ,  is the time a t  which the latest aspiration took place, H ,  is the average 
heating rate of the cooler fluid in the mixing zone and d, is the thickness of the 
mixing zone. Now consider the timing of aspiration events. There is some regularity 
in the distribution of those events. For sufficiently long waiting times however 
the memory of the previous event is lost. As a result the tail of the waiting time 
distribution is exponential as in a Poisson distribution of points on the same axis. It 
is actually quite reasonable for a chaotic central region that the aspiration of a piece 
of the mixing zone is a randomly distributed event. From the exponential distribution 
of waiting times an exponential distribution of temperatures Tm follows. 

The difference between the two slopes for positive and negative values of T - T, in 
figure 12 can be tentatively explained as a result of the directed eddy motion shown 
in figure 14(a). The fluid moved into the central region via aspiration events in the 
upper mixing zone has to travel much further to reach the probe than the fluid 
coming from below. We expect that  the former is cold and the latter hot. Hence the 
temperature of the hot fluid will be moderated to a much smaller degree than that 
of the cold fluid. Thence the distribution is skewed towards the hotter side. 

Exponential distributions have been observed in several other turbulent fluid 
flows. It would be interesting to know whether the present model can also be applied 
to other experiments. In the present experiment an exponential distribution of 
waiting times between major temperature fluctuations has also been observed and it 
would be interesting to know if events with similar waiting time distributions can be 
observed in other situations and related to an exponentially distributed variable. 

We now turn to the analysis of the oscillation frequency op. For this analysis we 
require the width of the mixing zone, d,. The turbulent advection of the central fluid 
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a t  temperature A ,  can create regions of inverted gradient, with the hot fluid on top 
of the cold fluid (see our cartoon view in figure 14). Experimental measurements 
associate the frequency wp with the mixing layers. This suggests the use of d ,  as a 
characteristic length of the regions of inversion. The inverted gradient is then 
A,/d,  and waves of length d ,  will oscillate in this adverse gradient with the 
Brunt-Vaisala frequency (Vaisala 1925 ; Brunt 1927) 

gad, 
OBV = (7) 

From (3.12), (3.18) and (3.5) one gets 

wBv - Ra). (3.20) 

This frequency scales with Ra just as the frequency wp observed in the experiment, 
and we thus get a=+. It is of an entirely different nature than the frequency 
predicted by Howard (1966) and observed in some experiments at higher Prandtl 
numbers. 

4. The stability of the boundary layer 
In  this section we present a linear stability analysis of the boundary layer. The 

stability of the boundary layer is an important problem because our theory suggests 
that the size of the boundary layer grows so rapidly that it would become unstable 
with respect to thermal convection. Indeed as shown in (2.8) the Rayleigh number 
of this layer grows asymptotically. This is in contradiction with the hypothesis of 
marginal stability of the boundary layer (Howard 1966). I n  our analysis we also 
assume that the boundary layer is marginally stable, but the stability analysis must 
involve a shearing wind. The effect of a shearing wind on convection was investigated 
in an experiment of Ingersoll (1966). He observed a decrease of the Nusselt number 
when a moderate shear was imposed and attributed i t  to the stretching and breaking 
of the temperature carrying eddies by the shear. Theoretical work by various authors 
also confirms the existence of this effect for a horizontal Poiseuille flow in a layer 
heated from belaw (Datta 1965; Hughes & Reid 1967; Gage & Reid 1968). The 
influence of shear on the stability of reacting systems was also studied by Spiegel & 
Zaleski (1984). It was found that shear was stabilizing at large wavenumber but 
could be destabilizing at small wavenumbers. I n  this work we numerically investigate 
the effect of a plane Couette flow. We describe this analysis in a rather detailed way 
and derive a stability condition for the boundary layer. We then return to our scaling 
theory and show that this condition is always realized. The system of linearized 
Boussinesq equations about a wind of horizontal speed uo(z) = G,,(z) X is 

I u, + u, - Vu + wu,, = vV2u - V p  + gaTz", 

+ u, * VT - ( A/h) w = K V T ,  

v . u  = 0, 
Boundary conditions are 

T(z ,  y, 0) = A ,  T(z ,  y, A )  = 0. 

For the velocity, there can be no-slip 

u = v = w = 0 for x = O,h, 

or slip w = 0, w,, = 0 for z = 0,A. 
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To write (4.1), (4.2) and (4.3) in non-dimensional form we use A as the unit of length, 
h2/K as the unit of time, and d as the unit of temperature. Rub’ = g a A A 3 / v ~  is then 
the boundary-layer Rayleigh number while Re = hii,/v is the shear-flow Reynolds 
number 

(4.5) 

(4.6) 

q+PrReG,,Tz-w = V 2 T ,  (4.7) 

u,+w, = 0. (4.8) 

ut + PrRe ti, u, +PrRe Go, w = P r  V2u-p5,  

wt + Pr Re 3, w, = P r  V2w - p ,  + Pr Rab’T, 

The variables u, w and p can be eliminated from the stability equations, leaving an 
equation for T alone. We look for solutions of the form 

(4.9) 

where B(z)  is an unknown complex function. Re, Im mean, respectively, the real and 
imaginary part. It is convenient to take c‘ = PrRec where c is an unknown complex 
eigenvalue or complex wave speed c = c, + ici. Instability occurs when an eigenvalue 
with imaginary part ci > 0 is found. A sixth-order equation for 8 is obtained through 
elimination of u, v and p ,  

L,L,8+RaPrk28 = 0, (4.10) 

T(z, z )  = Re [8(z)  exp (ik(z-c’t))], 

where L, = -ikPrRe [(4,-~)(D~-k~)-u,,~~]+Pr(D~-k~)~, 

L, = -ikPrRe (Go - c )  + (D2 - k2), 

and where we use the notation D = d/dz. The boundary conditions can be rewritten 
in terms of 8. There are six of them, of the form %(8) = 0 for i = 1 to 6 :  

(4.11) 

For P r  = 1 the problem is identical to the stability analysis of a circular Couette flow 
between cylinders rotating at  approximately the same speed with an axial flow a,. 
This problem has been treated for the case of a Poiseuille flow 4, by Datta (1965), and 
Hughes & Reid (1967). Datta made a small Re expansion whereas Hughes & Reid 
started from large Re. Gage & Reid (1968) summarized these results and discussed 
their application to three-dimensional stability and shear flow. It results from the 
analysis of Reid and his coworkers that for Re < 5400 the shear stabilizes convection 
rolls normal to the direction of shear in surprising agreement with the small-Re result 
of Datta, 

Ra, = 1708.8+1.32Re2. (4.12) 

Why this small-Re result is valid over several orders of magnitude is not well 
understood. At Re = 5400 the viscous instability of Poiseuille flow sets in. We have 
not found many other analyses of that problem in the literature. Most authors seem 
interested in the effect of a stabilizing temperature gradient on the shear instability 
and the case of an unstable stratification is seldom treated. 

We numerically solved (4.10) for the special case of a Couette flow 4, = 2. A 
Couette flow has the special property of being linearly stable a t  all values of Re. 
It also probably corresponds more closely to the experimental situation. With 
a Couette flow additional symmetries arise in the problem (4.10) and one can set 
c, = i. Owing to those symmetries one can look for solutions such that Or@) = 

I A,(e) = Re 8, $(e) = Re [ L ~  el, $(e) = Re [DL, el, 
%(el = ImO, %(e) = ~m [L,o], $(8) = Im[DL,O]. 
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FIGURE 16. The marginal stability curve for convection with a shearing flow. The Prandtl number 
is 0.7. In ascending order the curves correspond to Reynolds numbers 0 (-), 20 (---), 40 (....) 
and 80 (---). The curves are the lower boundary of the stable regions. 

-Or( 1 - z) ,  B,(x) = Oi( 1 - z ) ,  where O = 0, + iO,. The solutions were found using a well- 
known technique (used for instance by Krueger, Gross & Di Prima 1966). First note 
that z = $ the symmetries of the equations allow a symmetric solution that verifies 
0, = D28, = D40, = 0 and DO, = D3Bi = DsOi = 0. At Re = 0 the first mode that 
becomes unstable has these symmetries. There remain six unknown derivatives a t  
z = 4. To solve the problem we construct six linearly independent solutions O@) in the 
following way: for @, DO$1)($) = 1 and all the other derivatives are 0. For O(*), 
DO!2)((g) = 0, D30p) = 1, D50:2) = 0 and all other derivatives zero. The four other 
solutions are similarly constructed. We then integrate from z = + t o  z = 1. Using the 
boundary conditions (4.11) we obtain a matrix 4, = ~ l , [ O ( ~ ) ( l ) ] .  A combination 
satisfying all the boundary conditions can be found if the determinant of 4j is zero. 
Starting from Re = 0, Ra = 1708 and k = 3.1 1 we tracked the values of Ra and k for 
which the determinant first changed sign. The marginal stability curves of figure 16 
show the effect of the shear, which is most pronounced at high values of k. We 
investigated only the range 1708 < Ra < lo5 since only a moderate increase in the 
boundary layer Rayleigh number is necessary to account for the experimental result. 
Indeed, one can notice that 

and hence from (2.1) 

Ru~'~,,,,,I~ = ~ORU~'~,,-~,,,. 

If one assumes that a t  the transition from soft to  hard turbulence Rub' has a critical 
value around lo3, critical numbers Ru, of order lo4 are required. 

The results thus obtained are summarized in figure 17 where we plot the minimum 
Ra required for instability versus PrRe2. The two parameter values Pr = 0.7 and 
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Pr Re2 (lo5) 
FIGURE 17. The critical Rayleigh number ws. the quantity PrRe' for 0, Pr = 0.7 and x , 

Pr = 7. Lines have been added to guide the eye. The data, however, are the points. 

Pr = 7.0 were investigated. Results similar to those known for the Poiseuille flow 
were obtained. Our numerical results can be conveniently summarized by the 
relation 

Ra:' = A(Pr) -I- J ,  Pr Re2, (4.13) 

where A(Pr)  is independent of Re and the number J ,  is analogous to a critical value 
of the Richardson number J = (agAh)/ut. We found J ,  x 0.4177 for Pr = 0.7 and 
J ,  z 0.5318 for Pr = 7.0. However, we have been unable to support the conjecture 
(4.13) through some sort of asymptotic analysis. The attraction of this formula, 
however, is that the viscosity and thermal diffusivities do not occur in it. It is 
moreover well established through numerical analysis. At high values of Re, the 
stability of the boundary layer thus requires winds of order uo such that 

ui cc agAh. 

From (3.11) and (3.17) one may get 

and hence 

AA = A,d,, 

uo cc (agA,d,)a. (4.14) 

It is easy to object that rolls with axes parallel to the shearing wind will not be 
stabilized by this mechanism. However as the direction of the wind fluctuates it will 
stabilize rolls tending to grow in any direction. One might also want to know the 
origin of the wind u,,. This can clearly not be the wind of the central region. This wind 
blows in a steady direction over a long time, if not permanently. But it is possible to 
argue that the shearing wind is created in the mixing layer, or is due to a secondary 
flow on top of the central region wind. The velocity of the fluid below the gravity 
waves conjectured in 93.4 is precisely (4.14) since 

u0 - d , W p .  (4.15) 

2 FLM 204 
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5. Conclusion 
The experiment described here shows rather conclusively that there is a wide range 

of Rayleigh numbers for which helium obeys a set of simple scaling laws. The 
heuristic similarity analysis offers a possible explanation for this observed behaviour. 

The major successes of the theoretical approach outlined here are : 
(i) An acceptable prediction of the scaling indices p, y ,  6 and E .  

(ii) The right general form for the temperature histogram in the hard turbulence 

Weaknesses include : 
(i)  Poor predictive power for the actual geometry of layers and thermals. 
(ii) The argument for the origin of op is not completely convincing. 
(iii) Less than compelling results for the Prandtl number dependence. 
(iv) The stability argument for the boundary layer is new, but it is hard to assess 

the validity of the linearization used to derive it. 
Clearly, our work here is a beginning not an end. The next steps should try to 

remedy the weaknesses mentioned above and also include : 
(i) A careful study, including visualizations, of the flow patterns to ascertain the 

real geometries of the flow. We have said very little about the large-scale circulation, 
although preliminary experimental evidence suggests its importance. 

(ii) An extension of this study to lower Rayleigh numbers or higher Prandtl 
numbers to obtain an understanding of how soft turbulence differs from hard 
turbulence. 

(iii) A study of the fine structures of the turbulent motion. This entire paper has 
been focused on the gross patterns of the flow. We have seen that the cell gives a 
simple and controllable turbulent behaviour. One major goal of the next studies 
should be to look into the details of the turbulence observed here. More detailed 
knowledge of both space and time correlations should be sought. Velocities should be 
measured to supplement the temperature studied here. 

(iv) Finally it would be very interesting to extend the experimental results and the 
theoretical concepts described here to higher values of the Rayleigh number. Many 
of the people we have discussed this work with believe that a t  higher Ra there will 
be a new and quite different behaviour. For instance Kraichnan (1962) predicts a new 
behaviour appearing between Ra = 10l8 and Ra = We do not know. Perhaps the 
hard turbulence extends to infinitely high values of Ra, perhaps not. 

We believe we have, following previous workers, devised an approach which 
can be very useful in getting a t  the core of one kind of turbulent motion. We must 
await future work to see whether this promise can be fulfilled through a gain in 
fundamental knowledge about the turbulent state. 

region. 
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